Abstract

To investigate the potential neuroprotection of oxymatrine in hypoxic-ischemic injury in rat's brain and the associated underlying mechanisms, modified neurological severity scores (mNSS) for neurological functional deficits, 2,3,5-triphenyl-tetrazolium chloride (TTC) staining for infarct volume, TUNEL assay and flow cytometry analysis for apoptosis were assessed. The expressions of Akt, glycogen synthase kinase 3 beta (GSK3β), phosphorylated Akt (p-Akt), phosphorylated GSK3β (p-GSK3β), nuclear factor erythroid 2-related factor 2 (Nrf2) and hemeoxygenase-1 (HO-1) were measured by western blot. Our results showed that infarct volume and the apoptosis of NeuN-positive cells were significantly reduced in rats that administrated oxymatrine, with a corresponding improvement in neurological function after H/I. Upregulated p-Akt, p-GSK3β, Nrf-2 and HO-1 expressions were observed in response to oxymatrine treatment. Moreover, the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 counteracted the protective effect of oxymatrine, evidenced by western blot and histological outcomes. To conclude, our results suggested that oxymatrine could exert efficacious neuroprotective effect against H/I injury by inhibiting apoptosis and oxidative stress, which might be related to the activation of Akt and GSK3β and modulation of Nrf-2/HO-1 signaling pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.