Abstract

OxymaPure (ethyl 2-cyano-2-(hydroxyimino)acetate) was tested as an additive for use in the carbodiimide (DIC) approach for the synthesis of a novel series of α-ketoamide derivatives (4-[2-(2-acetylaminophenyl)-2-oxo-acetylamino]benzoyl amino acid ester derivatives). OxymaPure showed clear superiority to HOBt/DIC or carbodiimide alone in terms of purity and yield. The title compounds were synthesized via the ring opening of N-acylisatin. First, N-acetylisatin was reacted with 4-aminobenzoic acid under conventional heating as well as microwave irradiation to afford 4-(2-(2-acetamidophenyl)-2-oxoacetamido)benzoic acid. This α-ketoamide was coupled to different amino acid esters using OxymaPure/DIC as a coupling reagent to afford 4-[2-(2-acetylaminophenyl)-2-oxo-acetylamino]benzoyl amino acid ester derivatives in excellent yield and purity. The synthesized compounds were characterized using FT-IR, NMR, and elemental analysis.

Highlights

  • Introduction αKetoamides are compounds of interest in organic chemistry and are present in many active pharmaceutical compounds [1,2,3,4,5,6]

  • 1-Acetylindoline-2,3-dione (N-acetylisatin, 1) was initially prepared by reaction of isatin with acetic anhydride, using conventional heating under the same conditions as those described in the literature [30,31]

  • We demonstrate that the use of a microwave irradiation, using a multimode reactor (Synthos 3000, Anton Paar GmbH, Graz, Austria, 1,400 W maximum magnetron, method B; Experimental section), renders 1 from isatin and acetic anhydride (Scheme 2) in excellent yield in less reaction time and higher purity than the conventional method, as observed from spectral data

Read more

Summary

Introduction

Ketoamides are compounds of interest in organic chemistry and are present in many active pharmaceutical compounds [1,2,3,4,5,6]. Parallel with the application of the α-ketoamide moiety in medicinal chemistry, numerous synthetic methods have been described [7,8,9,10,11,12,13,14,15,16,17,18,19,20,21]. N-acetylisatin (1) by the attack of an amine at C2-carbonyl group of N-acetylisatin (Scheme 1) [22,23,24,25,26,27]. General mechanism for the reaction of N-acylisatin (1) with amines

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.