Abstract

Cerebral vasospasm following aneurysmal subarachnoid hemorrhage (SAH) has devastating consequences. Oxyhemoglobin (oxyhb) has been implicated in SAH-induced cerebral vasospasm as it causes cerebral artery constriction and increases tyrosine kinase activity. Voltage-dependent, Ca(2+)-selective and K(+)-selective ion channels play an important role in the regulation of cerebral artery diameter and represent potential targets of oxyhb. Here we provide novel evidence that oxyhb selectively decreases 4-aminopyridine sensitive, voltage-dependent K(+) channel (K(v)) currents by approximately 30% in myocytes isolated from rabbit cerebral arteries but did not directly alter the activity of voltage-dependent Ca(2+) channels or large conductance Ca(2+)-activated (BK) channels. A combination of tyrosine kinase inhibitors (tyrphostin AG1478, tyrphostin A23, tyrphostin A25, genistein) abolished both oxyhb-induced suppression of K(v) channel currents and oxyhb-induced constriction of isolated cerebral arteries. The K(v) channel blocker 4-aminopyridine also inhibited oxyhb-induced cerebral artery constriction. The observed oxyhb-induced decrease in K(v) channel activity could represent either channel block, or a decrease in K(v) channel density on the plasma membrane. To explore whether oxyhb altered trafficking of K(v) channels to the plasma membrane, we used an antibody generated against an extracellular epitope of K(v)1.5 channels. In the presence of oxyhb, staining of K(v)1.5 on the plasma membrane surface was markedly reduced. Furthermore, oxyhb caused a loss of spatial distinction between staining with K(v)1.5 and the general anti-phosphotyrosine antibody PY-102. We propose that oxyhb-induced suppression of K(v) currents occurs via a mechanism involving enhanced tyrosine kinase activity and channel endocytosis. This novel mechanism may contribute to oxyhb-induced cerebral artery constriction following SAH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.