Abstract

Cerebral vasospasm after subarachnoid hemorrhage (SAH) is a major contributor to mortality and morbidity after aneurysm rupture. Recently, R-type voltage-dependent Ca(2+) channel (VDCC) expression has been associated with increased cerebral artery constriction in a rabbit model of SAH. The goal of the present study was to examine whether the blood component oxyhemoglobin (oxyHb) can mimic the ability of SAH to cause R-type VDCC expression in the cerebral vasculature. Rabbit cerebral arteries were organ cultured in serum-free media for up to 5 days in the presence or absence of purified oxyHb (10 micromol/L). Diameter changes in response to diltiazem, (L-type VDCC antagonist) and SNX-482 (R-type VDCC antagonist) were recorded at day 1, 3, or 5 in arteries constricted by elevated extracellular potassium. RT-PCR was performed on RNA extracted from arteries cultured for 5 days (+/-oxyHb) to assess VDCC expression. After 5 days, oxyHb-treated arteries were less sensitive and partially resistant to diltiazem compared to similar arteries organ cultured in the absence of oxyHb. Further, SNX-482 dilated arteries organ cultured for 5 days in the presence, but not in the absence, of oxyHb. RT-PCR revealed that oxyHb treated arteries expressed R-type VDCCs (Ca(V) 2.3) in addition to L-type VDCCs (Ca(V) 1.2), whereas untreated arteries expressed only Ca(V) 1.2. These results demonstrate that oxyhemoglobin exposure for 5 days induces the expression of Ca(V) 2.3 in cerebral arteries. We propose that oxyhemoglobin contributes to enhanced cerebral artery constriction after SAH via the emergence of R-type VDCCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call