Abstract

The correlation between the oxidative processes in tert-butyl hydroperoxide (tBHP)-exposed red blood cells and the reactions of oxygen consumption and release were investigated. Red blood cell exposure to tBHP resulted in transient oxygen release followed by oxygen consumption. The oxygen release in red blood cells was associated with intracellular oxyhaemoglobin oxidation. The oxygen consumption proceeded in parallel with free radical generation, as registered by chemiluminescence, but not to membrane lipid peroxidation. The oxygen consumption was also observed in membrane-free haemolyzates. The order of the organic hydroperoxide-induced reaction of oxygen release with respect to the oxidant (tBHP) was estimated to be 0.9 ± 0.1 and that of the oxygen consumption reaction was determined to be 2.4 ± 0.2. The apparent activation energy values of the oxygen release and oxygen consumption were found to be 107.5 ± 18.5 kJ/mol and 71.0 ± 12.5 kJ/mol, respectively. The apparent pKa value for the functional group(s) regulating the cellular oxyHb interaction with the oxidant in tBHP-treated red blood cells was estimated to be 6.7 ± 0.2 and corresponded to that of distal histidine protonation in haemoprotein. A strong dependence of tBHP-induced lipid peroxidation on the oxygen concentration in a red blood cell suspension was observed (P50 = 32 ± 3 mmHg). This dependence correlated with the oxygen dissociation curve of cellular haemoglobin. The order of the membrane lipid peroxidation reaction with respect to oxygen was found to be 0.5 ± 0.1. We can conclude that the intensity of the biochemical process of membrane lipid peroxidation in tBHP-exposed erythrocytes is controlled by small changes in such physiological parameters as the oxygen pressure and oxygen affinity of cellular haemoglobin. Neither GSH nor oxyhaemoglobin oxidation depended on oxygen pressure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call