Abstract

The cerebral endothelial cells (ECs) are a primary target of hypoxic or ischemic brain insults. EC damage may contribute to postischemic secondary injury. Massive production of NO after inducible NO synthase (iNOS) expression has been implicated in cell death. This study aimed to characterize bovine cerebral EC death in relation to iNOS expression after oxygen-glucose deprivation (OGD) in vitro. OGD in bovine cerebral ECs in culture was induced by deleting glucose in the medium and by incubating the cells in a temperature-controlled anaerobic chamber. The extent of cell death was assessed by trypan blue exclusion, MTT assay, and LDH release. ELISA, gel electrophoresis, and staining by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling were used to examine DNA fragmentation. The expression of iNOS mRNA and protein was detected by reverse transcription-polymerase chain reaction and Western blotting, respectively. Nitrotyrosine expression was confirmed with Western blot analysis and immunostaining. Bovine cerebral EC death was dependent on the duration of OGD and showed selected biochemical, morphological, and pharmacological features suggestive of apoptosis. OGD also induced the expression of iNOS mRNA and protein in bovine cerebral ECs. Increased expression of nitrotyrosine, the product formed by peroxynitrite reaction with proteins, was also detected after OGD. The involvement of iNOS in EC death was suggested by partial reduction of cell death by NO synthase inhibitors, including L-N(G)-(1-iminoethyl)ornithine and nitro-L-arginine, and an NO scavenger, the Fe(2+)-N-methyl-D-glucamine dithiocarbamate complex. OGD-induced bovine cerebral EC death involves an apoptotic process. Induction of iNOS with subsequent peroxynitrite formation may contribute to bovine cerebral EC death caused by OGD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.