Abstract

Unipolar brush cells (UBCs) are excitatory interneurons in the granular layer of the cerebellar cortex, which are predominantly distributed in the vestibulo-cerebellar region. The unique firing properties and synaptic connections of UBCs may underlie lobular heterogeneity of excitability in the granular layer and the susceptibility to ischemia-induced excitotoxicity. In this study, we investigated the effects of oxygen–glucose deprivation (OGD) on the firing properties of UBCs and granule cells and spontaneous excitatory postsynaptic currents (sEPSCs) of Purkinje cells using whole-cell recordings. Short-term OGD induced increases in spontaneous firing of UBCs by causing membrane depolarization via the activation of NMDA receptors. UBC firing indirectly affected Purkinje cells by altering parallel fiber inputs of a subset granule cells, resulting in a marked increase in sEPSCs in Purkinje cells in vestibulo-cerebellar lobules IX–X, but not in lobules IV–VI, which have fewer UBCs. Similarly, the frequency and amplitude of sEPSCs in Purkinje cells were significantly greater in lobules IX–X than in IV–VI, even in control conditions. These results reveal that UBCs play key roles in regulating local excitability in the granular layer, resulting in lobular heterogeneity in the susceptibility to ischemic insult in the cerebellum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.