Abstract

Solar fuel production by photosynthetic systems strongly relies on developing efficient and stable oxygen-evolution catalysts (OECs). Cerium(IV) ammonium nitrate (CAN) has been the most commonly used sacrificial oxidant to investigate OECs. Although many metal oxides have been extensively investigated as OECs in the presence of CAN, mechanistic studies were rarely reported. Herein, first, Fe(III) (hydr)oxide (FeOxHy) was prepared by the reaction of Fe(ClO4)3 and KOH solution and characterized by some methods. Then, changes in Fe oxide in the presence of CAN during the OER were tracked using in situ Raman spectroscopy, in situ X-ray absorption spectroscopy, in situ visible spectroscopy, and in situ electron paramagnetic resonance spectroscopy. FeOxHy in the presence of CAN and during the OER converted to γ-Fe2O3 and [Fe(H2O)6]3+, and a small amount of oxygen was formed. A maximum turnover frequency and turnover number of 10-6 s-1 and 1.3 × 10-3 mol(O2)/mol(Fe) (for half an hour) in the presence of CAN (0.20 M) and FeOxHy were observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.