Abstract

We examined the interaction of oxygen with ultrathin Ru layers deposited on a Au(111) substrate using scanning tunneling microscopy, X-ray photoelectron spectroscopy, and low-energy electron diffraction. The deposition of pure Ru below one monolayer (ML) at room temperature leads to the formation of clusters on the Au(111) surface, preferentially located at the elbow sites of the herringbone reconstruction. Subsequent exposure of molecular oxygen to such a Ru-covered Au(111) surface at 680 K results in the growth of two-layer-thick Ru islands that are embedded in the top Au(111) layer. This structural reorganization of Ru is driven by the minimization of surface energy and mediated by a mobile RuOx species. Deposition of an increasing amount of Ru at 620 K (0.5-10 ML, ML = monolayer) leads to a rough Ru film on Au(111). Subsequent oxygen treatment (10(-5) mbar) at 680 K creates either a porous Ru film (<4 ML) or a flat RuO2(110) film (>6 ML) depending on the thickness of the Ru film.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.