Abstract

BOLD (blood oxygen level dependent) MRI can detect regional condition of myocardial oxygen supply and demand by means of paramagnetic properties. Noninvasive assessment of myocardial oxygenation by BOLD MRI in hypertensive patients with hypertension (HTN) left ventricular myocardial hypertrophy (LVMH) and HTN non-LVMH and its correlation with myocardial mechanics were performed. Prospective. Twenty patients with HTN LVMH, 21 patients with HTN non-LVMH, and 23 normotensive controls were enrolled. Cine imaging, T2* and T1 mapping sequences were achieved at 3.0T. Dedicated T1 mapping, T2*, and cine imaging analysis were performed by two radiologists using cvi42. One-way analysis of variance, Kruskal-Wallis test, Bland-Altman analysis, Pearson's correlation coefficient, Spearman's rank correlation. T2* values of HTN LVMH group were significantly lower versus the controls (23.78 ± 3.09 versus 30.77 ± 2.71; P < 0.001) and HTN non-LVMH group (23.78 ± 3.09 versus 28.64 ± 4.23; P < 0.001). Left ventricular peak circumferential strain were reduced in HTN LVMH patients compared with other two groups (-11.32 [-15.64, -10.3], -16.78 [-19.35, -15.34], and -19.73 [-20.57, -18.73]; P < 0.05); and longitudinal strain of HTN LVMH patients were lower than other two groups (-11.31 ± 2.91, -15.1 ± 3.06, and -18.85 ± 1.85; P < 0.05); radial strain of HTN LVMH patients were also lower than other two groups (25.03 ± 16, 40.95 ± 17.5 and 47.9 ± 10.23; P < 0.05). Extracellular volume correlated with peak circumferential, longitudinal, and radial strain (spearman rho = 0.6, 0.64, and -0.69; P < 0.05), respectively; T2* negatively correlated with peak circumferential and longitudinal strain (spearman rho = -0.43 and -0.49; P < 0.05), respectively. Patients with lower T2* values had significant decreases in myocardial mechanics (P < 0.05). HTN LVMH patients have both impaired myocardial mechanics and decreased T2* values compared with HTN non-LVMH and normotensive groups. BOLD MRI could provide a feasible assessment modality for detecting altered T2* due to the change of de-oxygenated hemoglobin and hence to the change of signal intensity in oxygenation-sensitive images. 1 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2018;47:1297-1306.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.