Abstract

A highly efficient and reusable molybdenum‐based catalyst has been synthesized by covalent grafting of a bis(phenol) diamine ligand, namely 2‐(((2‐bromoethyl)(2‐((3,5‐di‐tert‐butyl‐2‐hydroxybenzyl)amino)ethyl)amino)methyl)‐4,6‐di‐tert‐butylphenol, onto functionalized ordered mesoporous silica (SBA‐15) followed by complexation with MoO2(acac)2. The resulting organic–inorganic hybrid material was found to be a highly effective catalyst for oxygenation of various sulfides to their corresponding sulfoxides or sulfones. The catalyst was characterized using transmission and scanning electron microscopies, X‐ray photoelectron, Fourier transform infrared and atomic absorption spectroscopies, Brunauer–Emmett–Teller surface area analysis and thermogravimetric analysis. Mild reaction conditions, high selectivity and easy recovery and reusability of the catalyst render the presented protocol very useful for addressing industrial needs and environmental concerns.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.