Abstract

There is large interest in 4-hydroxy-(2E)-alkenals because of their cytotoxicity in mammals. However, the biosynthetic pathway for these compounds has not been elucidated yet. In plants, 4-hydroxy-(2E)-alkenals were supposed to be derived by the subsequent actions of lipoxygenase and a peroxygenase on (3Z)-alkenals. The presence of 9-hydroxy-12-oxo-(10E)-dodecenoic acid (9-hydroxy-traumatin) in incubations of 12-oxo-(9Z)-dodecenoic acid (traumatin) in the absence of lipoxygenase or peroxygenase, has prompted us to reinvestigate its mode of formation. We show here that in vitro 9-hydroxy-traumatin, 4-hydroxy-(2E)-hexenal and 4-hydroxy-(2E)-nonenal, are formed in a nonenzymatic process. Furthermore, a novel product derived from traumatin was observed and identified as 11-hydroxy-12-oxo-(9Z)-dodecenoic acid. The results obtained here strongly suggest that the 4-hydroxy-(2E)-alkenals, observed in crude extracts of plants, are mainly due to autoxidation of (3Z)-hexenal, (3Z)-nonenal and traumatin. This may have implications for the in vivo existence and previously proposed physiological significance of these products in plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call