Abstract

(3Z)-Alkenals, such as (3Z)-hexenal and (3Z)-nonenal, are produced from polyunsaturated fatty acids via lipoxygenase and hydroperoxide lyase catalysis, but in soybeans (Glycine max L.) (3Z)-alkenals have a fleeting existence. In this study it was shown that soybean seeds possess two pathways that metabolize (3Z)-alkenals. One is a soluble (3Z):(2E)-enal isomerase that transformed (3Z)-hexenal and (3Z)-nonenal into the corresponding (2E)-alkenals. The other was a membrane-bound system that converted (3Z)-hexenal and (3Z)-nonenal into (2E)-4-hydroxy-2-hexenal and (2E)-4-hydroxy-2-nonenal, respectively. The latter conversion was shown to absorb O2 with a pH optimum of 9.5. Little effect observed with lipoxygenase inhibitors suggested that oxidation was not catalyzed by lipoxygenase. Instead, a specific (3Z)-alkenal oxygenase was implicated in forming intermediate alkenal hydroperoxides. Hydroperoxide-dependent peroxygenase (epoxygenase) is known to reduce hydroperoxides to their corresponding hydroxides and is also known to be inhibited by hydrogen peroxide preincubation. Consequently, intermediate 4-hydroperoxy-2-alkenals could be observed after inhibiting hydroperoxide-dependent peroxygenase by preincubation with hydrogen peroxide. Because 4-hydroxy-2-alkenals are potent toxins, these compounds may be produced as nonvolatile plant defensive substances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.