Abstract

Hemodynamics can be explored through various biomedical imaging techniques. However, observing transient spatiotemporal variations in the saturation of oxygen (sO2) within human blood vessels proves challenging with conventional methods. In this study, we employed photoacoustic computed tomography (PACT) to reconstruct the evolving spatiotemporal patterns in a human vein. Through analysis of the multi-wavelength photoacoustic (PA) spectrum, we illustrated the dynamic distribution within blood vessels. Additionally, we computationally rendered the dynamic process of venous blood flowing into the major vein and entering a branching vessel. Notably, we successfully recovered, in real time, the parabolic wavefront profile of laminar flow inside a deep vein in vivo—a first-time achievement. While the study is preliminary, the demonstrated capability of dynamic sO2 imaging holds promise for new applications in biology and medicine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call