Abstract
Oxygenation and mean lung volume were investigated during high frequency oscillation (HFO) and conventional mechanical ventilation (CMV) in two models of lung disease and related to the lung mechanics of the lesions. Oleic acid (n = 10) or lung lavage (n = 12) pulmonary injury was induced in a series of rabbits. Each animal was alternately ventilated with HFO (15 Hz sinusoidal wave form) and CMV (flow generator I:E, 1:2; f, 30 breaths/min; VT, 10 to 15 ml/kg) at matched mean airway pressure. Pao2 was measured 5 minutes after onset of ventilation. In the lung lavage model Pao2 was significantly greater during HFO than CMV (Pao2 228 +/- 116 torr vs 71 +/- 42 torr) provided that mean airway pressure was greater than the distinct opening pressure characteristic of this lesion. In the oleic acid model oxygenation was again superior during HFO (Pao2 269 +/- 116 torr vs 110 +/- 83 torr), but only if HFO was preceded by a sustained inflation. Plethysmography in a subset of six rabbits from each group revealed that the improvements in oxygenation were associated with significantly higher mean lung volumes during HFO than CMV (58 +/- 30 ml vs 29 +/- 14 ml lung lavage model, 45 +/- 15 ml vs 30.9 +/- 13 ml on the oleic acid model). The importance of a sustained inflation in rapidly optimizing gas exchange during HFO but not CMV was demonstrated. A sustained inflation resulted in immediate and sustained increases in Pao2 (from 134 +/- 102 torr to 274 +/0 124 torr in the oleic acid model; from 115 +/- 105 torr to 291 +/- 143 torr in the lung lavage model) and mean lung volume (41.8 +/- 11 to 53.8 +/- 9.7 ml in the oleic acid model, 30.9 +/- 7.7 ml to 42.8 +/- 5 ml in the lung lavage model). It is suggested that in these two particular models of lung disease, HFO, when combined with a sustained inflation (to provide opening forces), can more fully exploit the pressure volume hysteresis of unstable lung units than CMV, thereby resulting in the larger mean lung volumes and better oxygenation observed during HFO.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.