Abstract
Several clinical issues are associated with reduced oxygen delivery to tissues due to impaired vascular perfusion; moreover, organs procured for transplantation are subjected to severe hypoxia during preservation. Consequently, alternative tissue oxygenation is an active field in biomedical research where several innovative approaches have been recently proposed. Among these, intravascular photosynthesis represents a promising approach as it relies on the intrinsic capacity of certain microorganisms to produce oxygen upon illumination. In this context, this work aims at the development of photosynthetic perfusable solutions that could be applied to preserve organs for transplantation purposes. Our findings demonstrate that a biocompatible physiological solution containing the photosynthetic microalgae Chlamydomonas reinhardtii can fulfill the metabolic oxygen demand of rat kidney slices in vitro. Furthermore, intravascular administration of this solution does not induce tissue damage in the rat kidneys. Moreover, kidney slices obtained from these algae-perfused organs exhibited significantly improved preservation after 24 h of incubation in hypoxia while exposed to light, resulting in reduced tissue damage and enhanced metabolic status. Overall, the results presented here contribute to the development of alternative strategies for tissue oxygenation, supporting the use of perfusable photosynthetic solutions for organ preservation in transplantation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.