Abstract

We employed an extravascular perfusion system through the subarachnoid space of the traumatized spinal cord of the cat for the delivery of oxygen utilizing a fluorocarbon emulsion containing essential nutrients, termed the oxygenated fluorocarbon nutrient solution (OFNS). Animals perfused for 2 hours with saline after impact injury of the spinal cord had significantly less edema at 1 cm below this site of injury than injured, untreated animals. However, in injured animals perfused with OFNS there was significant protection from spinal cord edema at both 1 and 2 cm below the site of injury. OFNS perfusion reduced the magnitude of hemorrhagic necrosis in both the gray and the white matter and protected the anterior horn cells against lysis at the site of injury. Adenosine triphosphate (ATP) is decreased within 1 minute and remains suppressed for 1 hour in gray and white matter of unperfused, injured animals. The level of ATP in both gray and white matter was significantly higher in injured OFNS-perfused animals than in saline-treated animals at the site below the spinal cord injury. Our data show that OFNS perfusion of the injured spinal cord reduced necrosis and edema and tended to normalize the levels of high energy ATP and intact anterior horn cells. These results demonstrate the feasibility of treating ischemic hypoxia of the spinal cord after trauma through an extravascular perfusion route that utilizes a fluorocarbon emulsion as a vehicle for the delivery of oxygen and other cellular nutrients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call