Abstract

Young's, shear and bulk moduli of Ce1-xSmxO2-x/2 (x ≤ 0.55) were studied using ultrasonic time of flight and nanoindentation techniques. Sound velocity measurements, corrected for sample porosity, demonstrate decrease in the unrelaxed ceramic moduli with increasing Sm-content. Room temperature creep under indenter load-hold, as well as time-dependent material stiffness, reveal a transition from prominent anelasticity in the fluorite phase to prominent elasticity in the double fluorite phase. This supports rearrangement of elastic dipoles under anisotropic stress, which occurs more readily when oxygen vacancies are not ordered on the crystal lattice, as the source of ceria anelastic behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.