Abstract

It is known that exposed surface determines material’s performance. WO3 is widely used in gas sensing and its working surface is proposed to control its sensitivity. However, the working surface, or most exposed surface with detailed surface structure remain unclear. In this paper, DFT calculation confirmed that oxygen vacancy O-terminated surface is the most exposed hexagonal WO3 (001) surface, judging from competitive adsorption of CO and O2, working surface determination for CO sensing and comparison of oxygen vacancy formation energies on different h-WO3 (001) surfaces. It is found that DFT can be a useful alternate for exposed surface determination. Our results provide new perspectives and performance explanations for material research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.