Abstract

A surface defect sandwich-structural TiO2−x/ultrathin g-C3N4/TiO2−x direct Z-scheme heterojunction photocatalyst is successfully constructed. The results manifest the existence of oxygen vacancies, sandwich structure and direct Z-scheme heterojunction. Noticeably, TiO2−x/ultrathin g-C3N4/TiO2−x efficiently eliminates high toxic tetracycline hydrochloride by means of·O2−, h+ and·OH, whose removal rate is 87.7% during 90 min and the pseudo-first-order rate constant reaches up to 31.7 min−1 × 10−3. The extraordinary performance can be attributed to the special 3D structure, Z-scheme heterojunction expediting charge transfer and promoting the generation of active species, meanwhile the oxygen vacancies enhancing the spatial separation of photo-induced carriers. Moreover, various environmental factors are systematically explored by statistics. SO42−, NH3-N and pH exhibit an obvious impact on removal rate. Meanwhile, TiO2−x/ultrathin g-C3N4/TiO2−x could also effectually remove tetracycline hydrochloride from complex actual-wastewater and exhibit high stability. Besides, the photocatalytic mechanism and degradation path of tetracycline hydrochloride are also elucidated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.