Abstract

Although considerable research works have witnessed the important modulations of oxygen vacancies on the optical, electrical, and magnetic properties of SnO2 nanostructures, it is not easy to control oxygen vacancy defects in such systems.The difficulty stems from that oxygen vacancy is a kind of atomic defect, and its distribution is sensitive to process conditions and external factors, which makes direct characterization and purposeful control difficult. The purpose of this work on Ce-doped SnO2 nanocrystals is to investigate the tolerance of the host lattice to Ce ions, the population and evolution of Ce3+/Ce4+ ions, and the possibility to adjust oxygen vacancies by Ce3+ ions, and then focus on the influence of oxygen vacancy defects on the band gap and luminescence performance. As Ce doping concentration increases from 0 to 12 at.%, the doped system changes from Ce3+ dominated at low doping amount (≤3 at.%) to Ce3+/Ce4+ coexistence at medium doping concentration (3 at.% ∼ 9 at.%), to occurrence of CeO2 impurity phase at over doping (∼12 at.%). The optimum doping occurs at 6 at.%, which corresponds to the saturated critical point of Ce3+ content and the maximum oxygen vacancy concentration. Importantly, the oxygen vacancies in the current Ce-doped SnO2 nanocrystals is directly regulated by the Ce3+ ion concentration on the Sn sites, which plays an important role in the band gap tuning and visible light emission. With Ce concentration increasing from 0 to 12 at.%, the band gap monotonicity decreases from 3.36 eV to 3.12 eV, while the intensity of the oxygen vacancy luminescence band first increases and then decreases, with the turning point at 6 at.%. Both band gap narrowing effect and enhanced emission indicate that Ce-doped SnO2 should be a promising method to design and manufacture visible light responsive SnO2 based optoelectronic materials by manipulating oxygen vacancy defects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.