Abstract

The carbon deposition at the Triple Phase Boundary (TPB) of the Nickel/Yttrium-Stabilized Zirconia (YSZ) interface is studied using the first-principles method based on density functional theory, with consideration of the interface oxygen vacancy. It is found that the CH fragment (the most stable dissociation products of CH4 on Ni catalyst) can easily diffuse and be trapped at the O vacancy. The trapped CH can dissociate to C and H with a much lower dissociation barrier (0.74 eV) as compared with that (1.39 eV) on the pure Ni (111) surface. Therefore, we propose that the carbon deposition may form easily at the interface oxygen vacancy of TPB as compared with that on the pure Ni (111) surface, which offers new understanding on the carbon deposition of the Ni/YSZ anode of solid oxide fuel cell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.