Abstract

Using the DFT+U method, i.e., first principles density functional theory calculations with the inclusion of on-site Coulomb interaction, the effects of Pd doping on the O vacancy formation energy (E(vac)) in CeO(2) has been studied. We find that E(vac) is lowered from 3.0 eV in undoped ceria to 0.6 eV in the Pd-doped compound. Much of this decrease can be attributed to emerging Pd-induced gap states above the valence band and below the empty Ce 4f states. These localized defect states involve the Pd ion and its nearest neighbors, which are also the main acceptors of the extra electrons left on reduction. The effect of the Pd dopant on the geometric structure is very modest for CeO(2) but considerable for CeO(2-x).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call