Abstract

Au/ZnO-x with different morphologies were prepared by controlling the amount of (NH4)2CO3 (x) using deposition precipitation method and applied for the one-step oxidative esterification of methanol and ethylene glycol (EG) to methyl glycolate (MG). The catalytic performance of Au/ZnO-x firstly increases and then decreases with the increase of the amount of (NH4)2CO3, and the maximum is achieved in Au/ZnO-4, with EG conversion of 89.6 % and 96.4 % selectivity to MG, significantly higher than the reported Au-based catalysts. The superior catalytic behavior is mainly derived from the most oxygen vacancy concentration (Vo+) accompanied with the highest I100/I101 ratio at moderate (NH4)2CO3 dosage, promoting the adsorption and dissociation of O2 molecular. Specifically, different preferential growth ratio between the (100) and (101) crystal plane accounts for Au/ZnO-2, Au/ZnO-4, and Au/ZnO-6 with lamellar stacking morphology, orderly layer structure, and randomly stacked layers, respectively. Significantly, it was found that there was a linear positive correlation between the Vo+ and the EG conversion. Innovatively, the oxygen vacancy played the predominant role in Au/ZnO-x for the catalyzed oxidative esterification of EG, which provided a new idea for the design of efficient catalysts for the reaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.