Abstract
Defects at transition metal (TM) and rare earth (RE) oxide surfaces, neutral oxygen vacancies in particular, play a major role in a variety of technological applications. This is the motivation of numerous studies of partially reduced oxide surfaces. We review, discuss, and compare theoretical data for structural and electronic properties and energetic quantities related to the formation of oxygen defects at TM and RE oxide surfaces using TiO 2, ZrO 2, V 2O 5, and CeO 2 as examples. Bulk defects, as far as relevant for comparison with the properties of reduced surfaces, are briefly reviewed. Special attention is given to the fate of the electrons left in the system upon vacancy formation and the ability of state-of-the-art quantum-mechanical methods to provide reliable energies and an accurate description of the electronic structure of the partially reduced oxide systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.