Abstract
Hematite (α-Fe2O3) can be considered as one of the top candidates to act as photoanode in the framework of clean hydrogen production through solar water splitting. The O:Fe ratio, that in this material plays a crucial role in the definition of its photoelectrochemical properties, has been investigated in detail. For this purpose, we examined thermal magnetite oxidation and hematite reduction as two possible routes to produce semiconducting iron oxides layers with controlled stoichiometry. We report on properties of single crystalline nanometric films elaborated by atomic oxygen plasma assisted molecular beam epitaxy as model systems to disentangle structural phase transition effects from pure stoichiometry ones. We provide new insights into the mechanisms related to hematite properties modifications and their correlation with photocurrent changes upon the presence of oxygen vacancies and phase mixing with magnetite, with respect to the vacancies concentration regimes. We show on one hand that crystallographic structure mixing appears as strongly detrimental for photoanodes synthesis whatever the oxygen vacancies concentration. On the other hand, oxygen vacancies in the optimal concentration range, while preserving the α-Fe2O3 corundum phase, is highly favorable for solar water splitting, inducing a substantial reduction of 0.2 V for the onset potential and an overall photocurrent increase of 50% with respect to stoichiometric hematite. The present study demonstrates more generally the possibility of using oxygen vacancies as a degree of freedom for the optimization of hematite photoanodes.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.