Abstract

Developing efficient but facile strategies to modulate the catalytic activity of Ru deposited on metal oxides is of broad interest but remains challenging. Herein, we report the oxygen vacancies and morphological modulation of vacancy-rich Co3O4 stabilized Ru nanoparticles (NPs) (Ru/VO-Co3O4) to boost the catalytic activity and durability for hydrogen production from the hydrolysis of ammonia borane (AB). The well-defined and small-sized Ru NPs and VO-Co3O4 induced morphology transformation via in situ driving VO-Co3O4 to 2D nanosheets with abundant oxygen vacancies or Co2+ species considerably promote the catalytic activity and durability toward hydrogen evolution from AB hydrolysis. Specifically, the Ru/VO-Co3O4 pre-catalyst exhibits an excellent catalytic activity with a high turnover frequency of 2114 min−1 at 298 K. Meanwhile, the catalyst also shows a high durability toward AB hydrolysis with six successive cycles. This work establishes a facile but efficient strategy to construct high-performance catalysts for AB hydrolysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call