Abstract

Manipulating catalytic active sites and reaction kinetics in alkaline media is crucial for rationally designing mighty water-splitting electrocatalysts with high efficiency. Herein, the coupling between oxygen vacancies and interface engineering is highlighted to fabricate a novel amorphous/crystalline CrOx -Ni3 N heterostructure grown on Ni foam for accelerating the alkaline hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Density functional theory (DFT) calculations reveal that the electron transfer from amorphous CrOx to Ni3 N at the interfaces, and the optimized Gibbs free energies of H2 O dissociation (ΔGH-OH ) and H adsorption (ΔGH ) in the amorphous/crystalline CrOx -Ni3 N heterostructure are conducive to the superior and stable HER activity. Experimental data confirm that numerous oxygen vacancies and amorphous/crystalline interfaces in the CrOx -Ni3 N catalysts are favorable for abundant accessible active sites and enhanced intrinsic activity, resulting in excellent catalytic performances for HER and OER. Additionally, the in situ reconstruction of CrOx -Ni3 N into highly active Ni3 N/Ni(OH)2 is responsible for the optimized OER performance in a long-term stability test. Eventually, an alkaline electrolyzer using CrOx -Ni3 N as both cathode and anode has a low cell voltage of 1.53V at 10mAcm-2 , together with extraordinary durability for 500h, revealing its potential in industrial applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call