Abstract

The biological stability of organic materials predicts their performance when used as either a soil improver or as an ingredient in growing media. CO2 release in a static measurement and O2 consumption rate (OUR) were compared for seven groups of growing media components. The ratio between CO2 release and OUR was matrix-specific. This ratio was highest for plant fibers high in C:N and with a high risk of N immobilization, intermediate for wood fiber and woody composts, and lowest for peat and other compost types. The effect of variable test conditions in the OUR setup was assessed for plant fibers, where addition of mineral N and/or nitrification inhibitor had no effect on the OUR measurements. Testing at 30 °C instead of 20 °C resulted in higher OUR values as expected, but did not change the effect of mineral N dose. A strong increase in the CO2 flux was measured when plant fibers were mixed with mineral fertilizer; in contrast, addition of mineral N or fertilizer before or during the OUR test had no effect. The present experimental setup did not allow for differentiation between a higher CO2 release as a result of increased microbial respiration after adding mineral N versus an underestimation of stability due to N limitation in the dynamic OUR setup. Results indicate that type of material, C:N ratio and risk of N immobilization all appear to affect the OUR results. The OUR criteria may therefore require clear differentiation based on the different materials used in horticultural substrates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call