Abstract
The purpose of the present study was to test the hypothesis that muscle fibre type influences the oxygen uptake (.VO(2)) on-kinetic response (primary time constant; primary and slow component amplitudes) during moderate, heavy and severe intensity sub-maximal cycle exercise. Fourteen subjects [10 males, mean (SD) age 25 (4) years; mass 72.6 (3.9) kg; .VO(2peak) 47.9 (2.3) ml kg(-1) min(-1)] volunteered to participate in this study. The subjects underwent a muscle biopsy of the vastus lateralis for histochemical determination of muscle fibre type, and completed repeat "square-wave" transitions from unloaded cycling to power outputs corresponding to 80% of the ventilatory threshold (VT; moderate exercise), 50% (heavy exercise) and 70% (severe exercise) of the difference between the VT and .VO(2peak). Pulmonary .VO(2) was measured breath-by-breath. The percentage of type I fibres was significantly correlated with the time constant of the primary .VO(2) response for heavy exercise (r=-0.68). Furthermore, the percentage of type I muscle fibres was significantly correlated with the gain of the .VO(2) primary component for moderate (r=0.65), heavy (r=0.57) and severe (r=0.57) exercise, and with the relative amplitude of the .VO(2) slow component for heavy (r=-0.74) and severe (r=-0.64) exercise. The influence of muscle fibre type on the .VO(2) on-kinetic response persisted when differences in aerobic fitness and muscle capillarity were accounted for. This study demonstrates that muscle fibre type is significantly related to both the speed and the amplitudes of the .VO(2) response at the onset of constant-load sub-maximal exercise. Differences in contraction efficiency and oxidative enzyme activity between type I and type II muscle fibres may be responsible for the differences observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.