Abstract

The present study reports the development of operational membrane-less glucose/O 2 biofuel cell based on oxygen contactor. Glucose oxidation was performed by glucose oxidase (GOx) co-immobilized with the mediator 8-hydroxyquinoline-5-sulfonic acid hydrate (HQS) at the anode, whereas oxygen was reduced by laccase co-immobilized with 2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonate) diammonium salt (ABTS 2−) at the cathode. Both enzymes and mediators were immobilized within electropolymerized polypyrrole polymers. Nevertheless, this system is limited by the secondary reaction of O 2 electro-reduction at the anode that reduces the electron flow through the anode and thus the output voltage. In order to avoid the loss of current at the anode in glucose/O 2 biofuel cell, we developed a strategy to supply dissolved oxygen separate from the electrolyte. Porous carbon tubes were used as electrodes and modified on the external surface by the couple enzyme/mediator. The inside of the cathode tube was continuously supplied with saturated dioxygen solution diffusing from the inner to the external surface of the porous tube. The assembled biofuel cell was studied under nitrogen at 37 °C in phosphate buffer at pH 5.0 and 7.0. The maximum power density reached 27 μW cm −2 at a cell voltage of 0.25 V at pH 5.0 with 10 mM glucose. The power density was twice as high as compared to the same system with oxygen bubbling directly in the cell.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.