Abstract

The oxygen transport properties of several organic electrolytes were characterized through measurements of oxygen solubility and electrolyte viscosity. Oxygen diffusion coefficients were calculated from electrolyte viscosities using the Stokes-Einstein relation. Oxygen solubility, electrolyte viscosity, and oxygen partial pressure were all directly correlated to discharge capacity and rate capability. Substantial improvement in cell performance was achieved through electrolyte optimization and increased oxygen partial pressure. The concentration of oxygen in the electrode under discharge was calculated using a semi-infinite medium model with simultaneous diffusion and reaction. The model was used to explain the dependence of cell performance on oxygen transport in organic electrolyte. © 2003 The Electrochemical Society. All rights reserved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.