Abstract

The oxidation of methoxy substituted benzyl phenyl sulfides can be used to distinguish between oxidants that react by single electron transfer (followed by oxygen rebound) and those which react by direct oxygen atom transfer in a two-electron process. Transfer of a single electron results in the formation of an intermediate radical cation, which can undergo C-S bond cleavage and deprotonation reactions leading to the formation of methoxy substituted benzyl derivatives, methoxy substituted benzaldehydes, and diphenyl disulfide. The oxidation of 4-methoxybenzyl phenyl sulfide and 3,4,5-trimethoxybenzyl phenyl sulfide by oxidants known to participate in single electron transfers (Ce(4+), Mn(3+), and Cr(6+)) results in the formation of the corresponding benzaldehydes, benzyl alcohols, benzyl acetates, and benzyl nitrates in variable yields. However, the only products obtained from the oxidation of the same compounds with RuO(4), RuO(4-), and RuO(4)(2-) are sulfoxides and sulfones. Therefore, it is concluded that the oxidation of sulfides by oxoruthenium compounds likely proceeds by a concerted mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call