Abstract

Nanomaterials-based bioinspired enzyme mimics are gaining increased attention as alternatives to biocatalysts. Herein, we report synthesizing oxygen-terminated few-layered titanium-based MXene nanosheets (OFL-Ti-MN). OFL-Ti-MN possesses horseradish peroxidase (HRP) activity in catalyzing the oxidation of colorless 3,3′,5,5′-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide (H2O2), which turns the solution color bluish-green. The solution color fades quickly when kanamycin (KAN) is added to this system. This reaction indicates that KAN can prevent color change in the OFL-Ti-MN/TMB-H2O2 system. Based on this strategy, we developed an OFL-Ti-MN-based colorimetric sensor to detect and quantify KAN. The sensor exhibited a dynamic range from 15.28 nM to 46.14 μM and a calculated limit of detection (LOD) of 15.28 nM. From the insight gained from the peroxidase-mimic property of OFL-Ti-MN, we proposed a mechanism for the inhibition effect of KAN on peroxidase and peroxidase-mimic enzymes. The proposed mechanism can potentially help elucidate the reasons for the antibacterial function of KAN and its side effects in humans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call