Abstract

Recently several experimental transmission electron microscopy (TEM) studies have reported the observation of nanoscale triangular defects in mono- and multilayer hexagonal boron nitride (h-BN). First-principles calculations are employed to study the thermodynamical stability and spectroscopic properties of these triangular defects and the chemical nature of their edge termination. Oxygen-terminated defects are found to be significantly more stable than defects with nitrogen-terminated edges. Simulated x-ray absorption spectra of the boron K edge for oxygen-terminated defects show excellent agreement with experimental x-ray absorption near-edge spectroscopy (XANES) measurements on defective h-BN films with oxygen impurities. Finally, we show that the structural model for oxygen defects in h-BN as deduced from the simulated core-level spectroscopy is intrinsically linked to the equilateral triangle shape of defects as observed in many recent electron microscopy measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call