Abstract

Oxygen is a paramagnetic gas and it has relatively high magnetic susceptibility. On the contrary, nitrogen is a diamagnetic gas and it has relatively low and negative magnetic susceptibility. This results in countermagnetizing forces acting on these gases. The characteristics of oxygen separation/enrichment from atmospheric air in a capsule and air flow in a parallel-plate duct using a magnetizing force were investigated numerically. The direct simulation Monte Carlo (DSMC) method was utilized to obtain distribution of oxygen concentration of air under a strong magnetic field gradient. The molecular movement was calculated by taking into account the magnetizing forces on the molecules. The computations were performed for a wide range of pressure and magnetic flux density gradient. Quantitative characteristics of oxygen separation/enrichment from atmospheric air under a strong magnetic field gradient and a parameter which governs this phenomenon are obtained from the simulation results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call