Abstract

Oxygen-sensitive accumulation and degradation, two opposite but intrinsically linked events, of heme proteins in mitochondria affect mitochondrial functions, including bioenergetics and oxygen-sensing processes. Cystathionine β-synthase (CBS) contains a prosthetic heme group and catalyzes the production of hydrogen sulfide in mammalian cells. Here we show that CBS proteins were present in liver mitochondria at a low level under normoxia conditions. Ischemia/hypoxia increased the accumulation of CBS proteins in mitochondria. The normalization of oxygen partial pressure accelerated the degradation of CBS proteins. Lon protease, a major degradation enzyme in mitochondrial matrix, recognized and degraded mitochondrial CBS by specifically targeting at the oxygenated heme group of CBS proteins. The accumulation of CBS in mitochondria increased hydrogen sulfide production, which prevented Ca(2+)-mediated cytochrome c release from mitochondria and decreased reactive oxygen species generation. Mitochondrial accumulation of heme oxygenase-1, another heme protein, was also regulated by oxygen level and Lon protease in the same mechanism as for CBS. Our findings provide a fundamental and general mechanism for oxygen-sensitive regulation of mitochondrial functions by linking oxygenation level to the accumulation/degradation of mitochondrial heme proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.