Abstract

Oxygen availability affects the transcription of a number of genes in nearly all organisms. Although the molecular mechanisms for sensing oxygen are not precisely known, heme is thought to play a pivotal role. Here, we address the possibility that oxygen sensing in yeast, as in mammals, involves a redox-sensitive hemoprotein. We have found that carbon monoxide (CO) completely blocks the anoxia-induced expression of two hypoxic genes, OLE1 and CYC7, partially blocks the induction of a third gene, COX5b, and has no effect on the expression of other hypoxic or aerobic genes. In addition, transition metals (Co and Ni) induce the expression of OLE1 and CYC7 in a concentration-dependent manner under aerobic conditions. These findings suggest that the redox state of an oxygen-binding hemoprotein is involved in controlling the expression of at least two hypoxic yeast genes. By using mutants deficient in each of the two major yeast CO-binding hemoproteins (cytochrome c oxidase and flavohemoglobin), respiratory inhibitors, and cob1 and rho0 mutants, we have found that the respiratory chain is involved in the anoxic induction of these two genes and that cytochrome c oxidase is likely the hemoprotein "sensor." Our findings also indicate that there are at least two classes of hypoxic genes in yeast (CO sensitive and CO insensitive) and imply that multiple pathways/mechanisms are involved in modulating the expression of hypoxic yeast genes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.