Abstract

According to the great potential of zero-valent iron nanoparticle applications in the environmental, medical, chemical, packaging and many other industries, there is still a need to tailor their production methods. This study reports the production of a hybrid nanostructure based on iron nanoparticles (INPs) produced in/on montmorillonite (MMT) nanoclays as an oxygen scavenger and barrier additive in polymeric packaging materials of oxygen-sensitive products. INPs and MMT were demonstrated to have effective mutual interactions in which the MMT host played a chemophysical trapping role for iron particles, causing smaller particles around 10 nm with 6.2 g/m2 higher specific surface area by limiting particle growth and agglomeration. In return, the embedding of primary iron cations in/on clays and growth of these particles during the reduction reaction pushed the clay layers out and helped further clay intercalation–exfoliation. Effective study of solvent and primary cation (Fe2+/Fe3+) types showed different preferences in interacting with natural and alkylammonium-modified MMT, resulting in the different site selection. Fe2+ cations preferred to migrate to the interlayer space, whereas Fe3+ cations tended to bond to the clay surface. The obtained results in this study suggest tailoring the ultimate oxygen scavenging capacity, shelf life, and migration properties of a hybrid nanoparticle according to the application requirements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.