Abstract
The aim of this study was to develop an oxygen scavenger and antioxidant active packaging material for fried peanuts. The packaging solution, which has been made at the laboratory previously, has been developed by cast film extrusion and is composed of low-density polyethylene-ethylene vinyl alcohol-polyethylene terephthalate (LDPE/EVOH/PET)-based films containing β-carotene (CAR). In comparison with film without additive, developed film presented an orange colouring (higher L* and b* values and lower a* values) and an increase in oxygen induction time (OIt) from 4.5 to 14.1 min. The incorporation of β-carotene to the formulation also brings about a significant effect on the thermal stability as maximum degradation temperatures increased around 1%. Regarding the oxygen absorption capacity of the films, values of 1.39 ± 0.10 mL O2 per g of film at laboratory scale and 1.7 ± 0.3 mL O2 per g of multilayer (ML)/LDPE_CAR were obtained, respectively, after 3 days, proving the suitability of the packaging solutions as oxygen absorbers. To validate the packaging solution, the oxidative stability of fried peanuts packed in fabricated multilayer β-carotene bags was evaluated for 3 months at 40 °C. The hexanal content remained constant during this period. Meanwhile, peanuts packed in ML without β-carotene increased their hexanal content to 294%. This fact indicated a lower extent of oxidation in fried peanuts compared to food samples packaged in control films, suggesting the potential of ML/LDPE_CAR films as sustainable and antioxidant food packaging systems to offer protection against lipid oxidation in foods. Sensory evaluation confirmed that ML/LDPE_CAR films provided the peanut samples with an extra aroma due to the volatile degradation products of β-carotene (such as β-cyclocitral or 6-methyl-5-hepten-2-ol).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.