Abstract
Oxygen saturation level plays a vital role in screening, diagnosis, and therapeutic assessment of disease’s assortment. There is an urgent need to design and implement early detection devices and applications for the COVID-19 pandemic; this study reports on the development of customized, highly sensitive, non-invasive, non-contact diffused reflectance system coupled with hyperspectral imaging for mapping subcutaneous blood circulation depending on its oxygen saturation level. The forearm of 15 healthy adult male volunteers with age range of (20–38 years) were illuminated via a polychromatic light source of a spectrum range 400–980 nm. Each patient had been scanned five times to calculate the mean spectroscopic reflectance images using hyperspectral camera. The customized signal processing algorithm includes normalization and moving average filter for noise removal. Afterward, employing K-means clustering for image segmentation to assess the accuracy of blood oxygen saturation (SpO2) levels. The reliability of the developed diffused reflectance system was verified with the ground truth technique, a standard pulse oximeter. Non-invasive, non-contact diffused reflectance spectrum demonstrated maximum signal variation at 610 nm according to SpO2 level. Statistical analysis (mean, standard deviation) of diffused reflectance hyperspectral images at 610 nm offered precise calibrated measurements to the standard pulse oximeter. Diffused reflectance associated with hyperspectral imaging is a prospective technique to assist with phlebotomy and vascular approach. Additionally, it could permit future surgical or pharmacological intercessions that titrate or limit ischemic injury continuously. Furthermore, this technique could offer a fast reliable indication of SpO2 levels for COVID-19 diagnosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.