Abstract
In the absence of electron acceptors and of oxygen a proton gradient was supported across thylakoid membranes of intact spinach chloroplasts by far-red illumination. It was decreased by red light. Inhibition by red light indicates effective control of cyclic electron flow by Photosystem II. Inhibition was released by oxygen which supported a large proton gradient. Oxygen appeared to act as electron acceptor simultaneously preventing over-reduction of electron carriers of the cyclic electron transport pathway. It thus has an important regulatory function in electron transport. Under anaerobic conditions, the inhibition of electron transport caused by red illumination could also be released and a large proton gradient could be established by oxaloacetate, nitrite and 3-phosphoglycerate, but not by bicarbonate. In the absence of oxygen, ATP levels remained low in chloroplasts illuminated with red light even when bicarbonate was present. They increased when electron acceptors were added which could release the over-reduction of the electron transport chain. Inhibition of electron transport in the presence of bicarbonate was relieved and CO 2-fixation was initiated by oxygen concentrations as low as about 10 μM. Once CO 2 fixation was initiated, very low oxygen levels were sufficient to sustain it. The results support the assumption that pseudocyclic electron transport is necessary to poise the electron transport chain so that a proper balance of linear and cyclic electron transport is established to supply ATP for CO 2 reduction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochimica et Biophysica Acta (BBA) - Bioenergetics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.