Abstract

The oxygen reduction reaction (ORR) is catalyzed by manganese(II) porphyrins in the presence of Bronsted acids (HAs). Analyses of the catalytic cyclic voltammetric profiles have permitted the ORR mechanism to be constructed and rate constants to be extracted for both the formation of the initial oxygen adduct and the O–O bond cleavage event for a series of HAs. The dependence of the formation rate constant of the oxygen adduct on reactant concentrations reveals a rate law that is first order in Mn porphyrin and oxygen substrate. A second order dependence in HA is observed for unadorned Mn porphyrin platforms whereas with Mn hangman porphyrin, a proton is provided intramolecular to the oxygen adduct and consequently the HA order is reduced to unity. The stabilization of the oxygen adduct with an additional hydrogen bond from HA engenders a rate-determining step involving O–O bond cleavage, resulting in the rare instance where the activation of the O–O bond is directly observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.