Abstract

PtCo catalysts with composition varying between Pt80Co20 and Pt10Co90 were prepared by electrochemical underpotential codeposition. The bimetallic catalysts were subjected to 1000 electrochemical cycles in 0.5 M HClO4 at room temperature. The activity and stability of these electrodes for oxygen reduction was determined, in conjunction with the characterization of these catalysts with energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. Although Pt-rich electrodes had better activity in the initial stages of potential cycling, higher Co atomic ratios led to higher stability and higher oxygen reduction reaction (ORR) activity after electrochemical cycling. Pt10Co90 turned out to be the best electrode among the alloys considered, in terms of ORR activity and stability, which is linked to a higher concentration of Co on the surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.