Abstract

Core-shell nanocatalyst activities are chiefly controlled by bimetallic material composition, shell thickness, and nanoparticle size. We present a machine learning framework predicting strain with site-specific precision to rationalize how strain on Pt core-shell nanocatalysts can enhance oxygen reduction activities. Large compressive strain on Pt@Cu and Pt@Ni induces optimal mass activities at 1.9 nm nanoparticle size. It is predicted that bimetallic Pt@Au and Pt@Ag have the best mass activities at 2.8 nm, where active sites are exposed to weak compressive strain. We demonstrate that optimal strain depends on the nanoparticle size; for instance, strengthening compressive strain on 1.92 nm sized Pt@Cu and Pt@Ni, or weakening compressive strain on 2.83 nm sized Pt@Ag and Pt@Au, can lead to further enhanced mass activities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.