Abstract

An isotropic carbon fibre was surface-treated by microwave oxygen plasma at different conditions and characterised by scanning electron microscopy (SEM), scanning tunneling microscopy (STM), N 2/CO 2 adsorption, Raman spectrometry, X-ray photoelectron spectroscopy (XPS) and temperature-programmed desorption (TPD). It is shown that the structure of the fibre suffers only limited alterations upon plasma treatment in such a way that the local disorder on its surface, which was already large in the fresh material, barely increases after the plasma exposure, as detected by Raman measurements. At the nanometre scale, STM images revealed a moderate increase in surface roughness. Evidence for chemical changes undergone by the fibre following the etching was provided by XPS and TPD, showing that stable oxygen functionalities were introduced by the plasma exposure, a result of practical importance for the application of this treatment not only to this type of carbon fibre, but to carbon materials in general. It was also observed that very gentle plasma exposures were generally sufficient to provide the fibre surface with a large amount of oxygen functional groups and that more intense treatments had a negative effect in this respect (i.e. they were not able to supply oxygen to the surface in larger amounts than the softer treatments did).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.