Abstract
The effect of water regain on the oxygen permeability coefficient (OP) of regenerated cellulose film was investigated. The OP of the dry film was extremely low, which was classified as a “very high” performance gas barrier; however, the OP increased with increasing water regain, and reached to the OP similar to that of low-density polyethylene film, which was categorized as a “poor” gas barrier. The film thickness increased with increasing water regain, and edge-view small-angle X-ray scattering revealed widening of the space between microcrystals in the thickness direction. Oxygen molecules likely passed through the space between cellulose molecules, which was widened with increasing water regain. The viscoelastic measurements indicated that regenerated cellulose existed in a rubbery state under wet conditions. Overall, the OP of regenerated cellulose was increased because of the widening and micro-Brownian motion of cellulose main chains caused by water.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.