Abstract

The chemical complexity of processes that accompany the oxygen turnover during the high-temperature selective oxidation processes, such as oxidative coupling of methane (OCM), oxidative dehydrogenation and oxidative cracking of light alkanes is analyzed. Particularly, chemical reactions and phase transitions in the complex oxide OCM catalyst NaWMn/SiO2 are studied using the X-ray photoelectron spectroscopy, X-ray powder diffraction, and scanning electron microscopy combined with local elemental analysis. It was found that during oxygen desorption crystalline Na2WO4 and Mn2O3 phases disappear, and newly-formed compounds solidify in the form of crystalline MnWO4 and the glue-like matter. The latter contains sodium and most likely Mn2+ ions. Its localization on the grain boundaries of the SiO2 (α-cristobalite) bulbs and morphology indicate that this matter is amorphous and has a high adhesion to the silica surface. After re-oxidation, the phase composition of the sample restores, although the size and location of the restored Na2WO4 and Mn2O3 particles evidence for their formation from the glue-like matter or its molten precursor. It was concluded that the supported components are present during the oxygen turnover in a molten state, in which all chemical and mass-transfer processes are accelerated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.