Abstract

Using wide spectral range insitu spectroscopic ellipsometry with systematic ultrahigh vacuum annealing and insitu exposure to oxygen, we report the complex dielectric function of MoS_{2} isolating the environmental effects and revealing the crucial role of unpassivated and passivated sulphur vacancies. The spectral weights of the A (1.92eV) and B (2.02eV) exciton peaks in the dielectric function reduce significantly upon annealing, accompanied by spectral weight transfer in a broad energy range. Interestingly, the original spectral weights are recovered upon controlled oxygen exposure. This tunability of the excitonic effects is likely due to passivation and reemergence of the gap states in the band structure during oxygen adsorption and desorption, respectively, as indicated by abinitio density functional theory calculation results. This Letter unravels and emphasizes the important role of adsorbed oxygen in the optical spectra and many-body interactions of MoS_{2}.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.