Abstract

Photocatalytic oxygen reduction is regarded as the cleanest approach for the production of hydrogen peroxide (H2O2). Herein, oxygen-modified graphite carbon nitride (g-C3N4) with nitrogen-defect (namely g-C3N4-ND4-OM3) was synthesized by a feasible method. Owing to the existence of nitrogen vacancy and oxygen-containing functional group, the absorption bands derived from n → π* and π → π* electronic transitions were enhanced, thereby enlarging the visible light response range of catalysts. Interestingly, nitrogen-defect can capture electron and effectively suppress the recombination of photoinduced electrons and holes. More importantly, the introduction of oxygen-containing functional groups can improve the hydrophilicity of g-C3N4, which was beneficial for the adsorption of dissolved oxygen. The electrostatic potential distributions of g-C3N4-based photocatalyst structural unit were also changed after introducing nitrogen vacancy and oxygen-containing functional group, and the electron-donating ability of g-C3N4 was improved. As a result, the evolution rate of H2O2 catalyzed by g-C3N4-ND4-OM3 was as high as 146.96 μmol/g/L under visible light irradiation. The photocatalytic H2O2 generation was completed through the direct 2-e− oxygen reduction. In short, current work will share novel insights into photocatalytic H2O2 generation over g-C3N4-based catalyst.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call